Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chronobiol Int ; 40(8): 1072-1083, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37661786

RESUMEN

Desynchronization of circadian rhythms and sleep-wake patterns impacts biochemical, physiological, and behavioral functions, including mental processes. The complex relationship between circadian rhythms and mental health makes it challenging to determine causality between circadian desynchronization and mental disorders. Regarding the fact that psychologists act as the front line for initial mental health care, we aimed to assess the knowledge and use of sleep science and basic chronobiology by professional psychologists in Brazil. Data were collected via an online questionnaire completed by 1384 professional psychologists between October 2018 and May 2019. Our findings revealed that ±80% of psychologists reported that at least half of their patients presented some sleep-related complaints; however, only ±27% routinely inquired about sleep quality even in the absence of patient complaints. Additionally, only ±66% initiated treatments to understand these complaints, potentially influenced by the lack of prior academic exposure to biological rhythms as reported by ±76% of Brazilian psychologists interviewed. Importantly, ±15% did not believe in an association between mental health and biological rhythms, and even a significant ±67% were unfamiliar with the term chronobiology and ±63% were not able to describe any other biological rhythm except for the sleep-wake cycle. These results demonstrate that fundamental concepts in chronobiology and sleep science are unknown to a substantial proportion of Brazilian psychologists. In conclusion, we propose that this subject could be more effectively integrated into psychologists' academic training, potentially promoting benefits through the incorporation of a chronobiological approach in mental health practice.


Asunto(s)
Ritmo Circadiano , Sueño , Humanos , Brasil , Reconocimiento en Psicología , Salud Mental
2.
Adv Biol (Weinh) ; 7(11): e2200289, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36650949

RESUMEN

Inhabitants of urban areas are constantly exposed to light at night, which is an important environmental factor leading to circadian disruption. Streetlights filtering light through the windows and night dim light lamps are common sources of dim light at night (DLAN). The female population is susceptible to circadian disruption. The present study is aimed to determine the impact of DLAN on female Wistar rats circadian rhythms, metabolism, reproductive physiology, and behavior. After 5 weeks of DLAN exposure daily, oscillations in activity and body temperature of female rats are abolished. DLAN also decreases nocturnal food ingestion, which results in a diminishment in total food consumption. These alterations in the temporal organization of the body are associated with a significant decrease in melatonin plasmatic levels, reproductive disruptions, decreased exploration times, and marked anhedonia. This study highlights the importance of avoiding exposure to light at night, even at low intensities, to maintain the circadian organization of physiology, and denotes the great necessity of increasing the studies in females since the sexual dimorphism within the effects of desynchronizing protocols has been poorly studied.


Asunto(s)
Actividad Motora , Fotoperiodo , Ratas , Femenino , Animales , Actividad Motora/fisiología , Ratas Wistar , Ritmo Circadiano/fisiología , Luz
3.
Glia ; 71(2): 155-167, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35971989

RESUMEN

Microglia is considered the central nervous system (CNS) resident macrophages that establish an innate immune response against pathogens and toxins. However, the recent studies have shown that microglial gene and protein expression follows a circadian pattern; several immune activation markers and clock genes are expressed rhythmically without the need for an immune stimulus. Furthermore, microglia responds to an immune challenge with different magnitudes depending on the time of the day. This review examines the circadian control of microglia function and the possible physiological implications. For example, we discuss that synaptic prune is performed in the cortex at a certain moment of the day. We also consider the implications of daily microglial function for maintaining biological rhythms like general activity, body temperature, and food intake. We conclude that the developmental stage, brain region, and pathological state are not the only factors to consider for the evaluation of microglial functions; instead, emerging evidence indicates that circadian time as an essential aspect for a better understanding of the role of microglia in CNS physiology.


Asunto(s)
Microglía , Fenómenos Fisiológicos , Microglía/fisiología , Macrófagos , Sistema Nervioso Central , Encéfalo , Inmunidad Innata
4.
Front Nutr ; 9: 999156, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204367

RESUMEN

Light at night is an emergent problem for modern society. Rodents exposed to light at night develop a loss of circadian rhythms, which leads to increased adiposity, altered immune response, and increased growth of tumors. In female rats, constant light (LL) eliminates the estrous cycle leading to a state of persistent estrus. The suprachiasmatic nucleus (SCN) drives circadian rhythms, and it interacts with the neuroendocrine network necessary for reproductive function. Timed restricted feeding (RF) exerts a powerful entraining influence on the circadian system, and it can influence the SCN activity and can restore rhythmicity or accelerate re-entrainment in experimental conditions of shift work or jet lag. The present study explored RF in female rats exposed to LL, with the hypothesis that this cyclic condition can rescue or prevent the loss of daily rhythms and benefit the expression of the estrous cycle. Two different feeding schedules were explored: 1. A 12-h food/12-h fasting schedule applied to arrhythmic rats after 3 weeks in LL, visualized as a rescue strategy (LL + RFR, 3 weeks), or applied simultaneously with the first day of LL as a preventive strategy (LL + RFP, 6 weeks). 2. A 12-h window of food intake with food given in four distributed pulses (every 3 h), applied after 3 weeks in LL, as a rescue strategy (LL + PR, 3 weeks) or applied simultaneously with the first day of LL as a preventive strategy (LL + PP, 6 weeks). Here, we present evidence that scheduled feeding can drive daily rhythms of activity and temperature in rats exposed to LL. However, the protocol of distributed feeding pulses was more efficient to restore the day-night activity and core temperature as well as the c-Fos day-night change in the SCN. Likewise, the distributed feeding partially restored the estrous cycle and the ovary morphology under LL condition. Data here provided indicate that the 12-h feeding/12-h fasting window determines the rest-activity cycle and can benefit directly the circadian and reproductive function. Moreover, this effect is stronger when food is distributed along the 12 h of subjective night.

5.
ACS Chem Neurosci ; 13(19): 2821-2828, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36122168

RESUMEN

Diabetes mellitus type 2 (T2D) complications include brain damage which increases the risk of neurodegenerative diseases and dementia. An early manifestation of neurodegeneration is olfactory dysfunction (OD), which is also presented in diabetic patients. Previously, we demonstrated that OD correlates with IL-1ß and miR-146a overexpression in the olfactory bulb (OB) on a T2D rodent model, suggesting the participation of inflammation on OD. Here, we found that OD persists on a long-term T2D condition after the downregulation of IL-1ß. Remarkably, OD was associated with the increased expression of the dopaminergic neuronal marker tyrosine hydroxylase, ERK1/2 phosphorylation, and reduced neuronal activation on the OB of diabetic rats, suggesting the participation of the dopaminergic tone on the OD derived from T2D. Dopaminergic neurons are susceptible in neurodegenerative diseases such as Parkinson's disease; therefore further studies must be performed to completely elucidate the participation of these neurons and ERK1/2 signaling on olfactory impairment.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , MicroARNs , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Neuronas Dopaminérgicas/metabolismo , Sistema de Señalización de MAP Quinasas , MicroARNs/metabolismo , Proteína Quinasa 1 Activada por Mitógenos , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/farmacología , Bulbo Olfatorio , Fosforilación , Ratas , Tirosina 3-Monooxigenasa/metabolismo
6.
BMC Biol ; 20(1): 58, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35236346

RESUMEN

BACKGROUND: Many epidemiological studies revealed that shift work is associated with an increased risk of a number of pathologies, including cardiovascular diseases. An experimental model of shift work in rats has additionally been shown to recapitulate aspects of metabolic disorders observed in human shift workers, including increased fat content and impaired glucose tolerance, and used to demonstrate that restricting food consumption outside working hours prevents shift work-associated obesity and metabolic disturbance. However, the way distinct shift work parameters, such as type of work, quantity, and duration, affect cardiovascular function and the underlying mechanisms, remains poorly understood. Here, we used the rat as a model to characterize the effects of shift work in the heart and determine whether they can be modulated by restricting food intake during the normal active phase. RESULTS: We show that experimental shift work reprograms the heart cycling transcriptome independently of food consumption. While phases of rhythmic gene expression are distributed across the 24-h day in control rats, they are clustered towards discrete times in shift workers. Additionally, preventing food intake during shift work affects the expression level of hundreds of genes in the heart, including genes encoding components of the extracellular matrix and inflammatory markers found in transcriptional signatures associated with pressure overload and cardiac hypertrophy. Consistent with this, the heart of shift worker rats not eating during work hours, but having access to food outside of shift work, exhibits increased collagen 1 deposition and displays increased infiltration by immune cells. While maintaining food access during shift work has less effects on gene expression, genes found in transcriptional signatures of cardiac hypertrophy remain affected, and the heart of shift worker rats exhibits fibrosis without inflammation. CONCLUSIONS: Together, our findings unraveled differential effects of food consumption on remodeled transcriptional profiles of the heart in shift worker rats. They also provide insights into how shift work affects cardiac function and suggest that some interventions aiming at mitigating metabolic disorders in shift workers may have adverse effects on cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedades Metabólicas , Horario de Trabajo por Turnos , Animales , Cardiomegalia , Ritmo Circadiano , Ingestión de Alimentos , Fibrosis , Inflamación/genética , Ratas , Horario de Trabajo por Turnos/efectos adversos , Transcriptoma
7.
Cell Mol Neurobiol ; 42(6): 1727-1743, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33813677

RESUMEN

The olfactory system is responsible for the reception, integration and interpretation of odors. However, in the last years, it has been discovered that the olfactory perception of food can rapidly modulate the activity of hypothalamic neurons involved in the regulation of energy balance. Conversely, the hormonal signals derived from changes in the metabolic status of the body can also change the sensitivity of the olfactory system, suggesting that the bidirectional relationship established between the olfactory and the hypothalamic systems is key for the maintenance of metabolic homeostasis. In the first part of this review, we describe the possible mechanisms and anatomical pathways involved in the modulation of energy balance regulated by the olfactory system. Hence, we propose a model to explain its implication in the maintenance of the metabolic homeostasis of the organism. In the second part, we discuss how the olfactory system could be involved in the development of metabolic diseases such as obesity and type two diabetes and, finally, we propose the use of intranasal therapies aimed to regulate and improve the activity of the olfactory system that in turn will be able to control the neuronal activity of hypothalamic centers to prevent or ameliorate metabolic diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedades Metabólicas , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/fisiología , Humanos , Hipotálamo/metabolismo , Enfermedades Metabólicas/metabolismo , Obesidad
8.
Front Integr Neurosci ; 15: 722523, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539357

RESUMEN

Sleep has a major role in learning, memory consolidation, and metabolic function. Although it is known that sleep restriction increases the accumulation of amyloid ß peptide (Aß) and the risk to develop Alzheimer's disease (AD), the mechanism behind these effects remains unknown. In this review, we discuss how chronic sleep restriction induces metabolic and cognitive impairments that could result in the development of AD in late life. Here, we integrate evidence regarding mechanisms whereby metabolic signaling becomes disturbed after short or chronic sleep restriction in the context of cognitive impairment, particularly in the accumulation of Aß in the brain. We also discuss the role of the blood-brain barrier in sleep restriction with an emphasis on the transport of metabolic signals into the brain and Aß clearance. This review presents the unexplored possibility that the alteration of peripheral metabolic signals induced by sleep restriction, especially insulin resistance, is responsible for cognitive deficit and, subsequently, implicated in AD development.

9.
Pharmacol Biochem Behav ; 201: 173105, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33444601

RESUMEN

The circadian system organizes circadian rhythms (biological cycles that occur around 24 h) that couple environmental cues (zeitgebers) with internal functions of the organism. The misalignment between circadian rhythms and external cues is known as chronodisruption and contributes to the development of mental, metabolic and other disorders, including cancer, cardiovascular diseases and addictive disorders. Drug addiction represents a global public health concern and affects the health and well-being of individuals, families and communities. In this manuscript, we reviewed evidence indicating a bidirectional relationship between the circadian system and the development of addictive disorders. We provide information on the interaction between the circadian system and drug addiction for each drug or drug class (alcohol, cannabis, hallucinogens, psychostimulants and opioids). We also describe evidence showing that drug use follows a circadian pattern, which changes with the progression of addiction. Furthermore, clock gene expression is also altered during the development of drug addiction in many brain areas related to drug reward, drug seeking and relapse. The regulation of the glutamatergic and dopaminergic neurocircuitry by clock genes is postulated to be the main circadian mechanism underlying the escalation of drug addiction. The bidirectional interaction between the circadian system and drug addiction seems to be mediated by the effects caused by each drug or class of drugs of abuse. These studies provide new insights on the development of successful strategies aimed at restoring/stabilizing circadian rhythms to reduce the risk for addiction development and relapse.


Asunto(s)
Relojes Circadianos/genética , Ritmo Circadiano/genética , Trastornos Relacionados con Sustancias/metabolismo , Trastornos Relacionados con Sustancias/psicología , Animales , Conducta Adictiva , Encéfalo/metabolismo , Relojes Circadianos/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Señales (Psicología) , Dopamina/metabolismo , Etanol/farmacología , Expresión Génica/efectos de los fármacos , Humanos , Drogas Ilícitas/farmacología , Recurrencia , Recompensa , Factores de Riesgo
10.
J Neurosci Res ; 99(2): 604-620, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33078850

RESUMEN

Individuals who regularly shift their sleep timing, like night and/or shift-workers suffer from circadian desynchrony and are at risk of developing cardiometabolic diseases and cancer. Also, shift-work is are suggested to be a risk factor for the development of mood disorders such as the burn out syndrome, anxiety, and depression. Experimental and clinical studies provide evidence that food intake restricted to the normal activity phase is a potent synchronizer for the circadian system and can prevent the detrimental health effects associated with circadian disruption. Here, we explored whether adult male Wistar rats exposed to an experimental model of shift-work (W-AL) developed depressive and/or anxiety-like behaviors and whether this was associated with neuroinflammation in brain areas involved with mood regulation. We also tested whether time-restricted feeding (TRF) to the active phase could ameliorate circadian disruption and therefore would prevent depressive and anxiety-like behaviors as well as neuroinflammation. In male Wistar rats, W-AL induced depressive-like behavior characterized by hypoactivity and anhedonia and induced increased anxiety-like behavior in the open field test. This was associated with increased number of glial fibrillary acidic protein and IBA-1-positive cells in the prefrontal cortex and basolateral amygdala. Moreover W-AL caused morphological changes in the microglia in the CA3 area of the hippocampus indicating microglial activation. Importantly, TRF prevented behavioral changes and decreased neuroinflammation markers in the brain. Present results add up evidence about the importance that TRF in synchrony with the light-dark cycle can prevent neuroinflammation leading to healthy mood states in spite of circadian disruptive conditions.


Asunto(s)
Ansiedad/prevención & control , Encéfalo/patología , Depresión/prevención & control , Conducta Alimentaria , Horario de Trabajo por Turnos/efectos adversos , Animales , Ansiedad/etiología , Ansiedad/patología , Astrocitos/patología , Complejo Nuclear Basolateral/patología , Región CA3 Hipocampal/patología , Proteínas de Unión al Calcio/análisis , Ritmo Circadiano , Depresión/etiología , Depresión/patología , Modelos Animales de Enfermedad , Ingestión de Energía , Preferencias Alimentarias , Proteína Ácida Fibrilar de la Glía/análisis , Inflamación , Hígado/metabolismo , Masculino , Proteínas de Microfilamentos/análisis , Microglía/ultraestructura , Prueba de Campo Abierto , Corteza Prefrontal/patología , Distribución Aleatoria , Ratas , Ratas Wistar , Reconocimiento en Psicología , Horario de Trabajo por Turnos/psicología , Factores de Tiempo , Aumento de Peso
11.
eNeuro ; 7(6)2020.
Artículo en Inglés | MEDLINE | ID: mdl-33203733

RESUMEN

The autonomic nervous system (ANS) modulates the immune response through the engagement of an anti-inflammatory reflex. There is controversy regarding which efferent branch of the ANS, sympathetic or parasympathetic, downregulates the intensity of the inflammatory response. Furthermore, how information about the immune status of the body reaches the CNS to engage this reflex remains unclear. The present study demonstrates the existence of a liver-spinal axis that conveys early circulating inflammatory information to the CNS in response to lipopolysaccharide (LPS) and serves as the afferent arm of a sympathetic anti-inflammatory reflex. Furthermore, brainstem and spinal cord visceral sensory neurons show a time-of-day-dependent sensitivity to the incoming inflammatory information, in particular, prostaglandins (PG). Consequentially, the liver-spinal axis promotes the retention of tumor necrosis factor α (TNFα) in the liver and spleen during the resting period, resulting in low plasmatic TNFα levels. Consistently, low sensitivity for LPS during the active period promotes the release of TNFα from the organs into the circulation, resulting in high plasmatic TNFα levels. The present novel findings illustrate how the time-of-day-dependent activation of the liver-spinal axis contributes to the daily fluctuations of the inflammatory response.


Asunto(s)
Sistema Nervioso Autónomo , Reflejo , Animales , Antiinflamatorios/farmacología , Hígado , Ratas , Médula Espinal
12.
Sci Rep ; 10(1): 6243, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32277140

RESUMEN

Night-workers, transcontinental travelers and individuals that regularly shift their sleep timing, suffer from circadian desynchrony and are at risk to develop metabolic disease, cancer, and mood disorders, among others. Experimental and clinical studies provide evidence that food intake restricted to the normal activity phase is a potent synchronizer for the circadian system and can prevent the detrimental metabolic effects associated with circadian disruption. As an alternative, we hypothesized that a timed piece of chocolate scheduled to the onset of the activity phase may be sufficient stimulus to synchronize circadian rhythms under conditions of shift-work or jet-lag. In Wistar rats, a daily piece of chocolate coupled to the onset of the active phase (breakfast) accelerated re-entrainment in a jet-lag model by setting the activity of the suprachiasmatic nucleus (SCN) to the new cycle. Furthermore, in a rat model of shift-work, a piece of chocolate for breakfast prevented circadian desynchrony, by increasing the amplitude of the day-night c-Fos activation in the SCN. Contrasting, chocolate for dinner prevented re-entrainment in the jet-lag condition and favored circadian desynchrony in the shift-work models. Moreover, chocolate for breakfast resulted in low body weight gain while chocolate for dinner boosted up body weight. Present data evidence the relevance of the timing of a highly caloric and palatable meal for circadian synchrony and metabolic function.


Asunto(s)
Desayuno/fisiología , Chocolate , Síndrome Jet Lag/prevención & control , Trastornos del Sueño del Ritmo Circadiano/prevención & control , Animales , Peso Corporal/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Modelos Animales de Enfermedad , Humanos , Síndrome Jet Lag/fisiopatología , Comidas/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Horario de Trabajo por Turnos/efectos adversos , Trastornos del Sueño del Ritmo Circadiano/etiología , Trastornos del Sueño del Ritmo Circadiano/fisiopatología , Núcleo Supraquiasmático/metabolismo , Aumento de Peso/fisiología
13.
Sci Rep ; 9(1): 18223, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31796782

RESUMEN

Restricted intermittent food access to palatable food (PF) induces addiction-like behaviors and plastic changes in corticolimbic brain areas. Intermittent access protocols normally schedule PF to a fixed time, enabling animals to predict the arrival of PF. Because outside the laboratory the presence of PF may occur in a random unpredictable manner, the present study explored whether random access to PF would stimulate similar addiction-like responses as observed under a fixed scheduled. Rats were randomly assigned to a control group without chocolate access, to ad libitum access to chocolate, to fixed intermittent access (CH-F), or to random unpredictable access (CH-R) to chocolate. Only the CH-F group developed behavioral and core temperature anticipation to PF access. Both groups exposed to intermittent access to PF showed binge eating, increased effort behaviors to obtain chocolate, as well as high FosB/ΔFosB in corticolimbic areas. Moreover, FosB/ΔFosB in all areas correlated with the intensity of binge eating and effort behaviors. We conclude that both conditions of intermittent access to PF stimulate addiction-like behaviors and FosB/ΔFosB accumulation in brain reward areas; while only a fixed schedule, which provides a time clue, elicited anticipatory activation, which is strongly associated with craving behaviors and may favor relapse during withdrawal.


Asunto(s)
Anticipación Psicológica , Conducta Adictiva/psicología , Conducta Alimentaria/psicología , Privación de Alimentos , Animales , Química Encefálica , Bulimia , Chocolate , Alimentos , Masculino , Proteínas Proto-Oncogénicas c-fos/análisis , Ratas , Ratas Wistar
14.
Proc Nutr Soc ; 77(3): 199-215, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29307314

RESUMEN

The circadian disruption in shift-workers is suggested to be a risk factor to develop overweight and metabolic dysfunction. The conflicting time signals given by shifted activity, shifted food intake and exposure to light at night occurring in the shift-worker are proposed to be the cause for the loss of internal synchrony and the consequent adverse effects on body weight and metabolism. Because food elicited signals have proven to be potent entraining signals for peripheral oscillations, here we review the findings from experimental models of shift-work and verify whether they provide evidence about the causal association between shifted feeding schedules, circadian disruption and altered metabolism. We found mainly four experimental models that mimic the conditions of shift-work: protocols of forced sleep deprivation, of forced activity during the normal rest phase, exposure to light at night and shifted food timing. A big variability in the intensity and duration of the protocols was observed, which led to a diversity of effects. A common result was the disruption of temporal patterns of activity; however, not all studies explored the temporal patterns of food intake. According to studies that evaluate time of food intake as an experimental model of shift-work and studies that evaluate shifted food consumption, time of food intake may be a determining factor for the loss of balance at the circadian and metabolic level.


Asunto(s)
Ritmo Circadiano , Ingestión de Alimentos , Conducta Alimentaria/fisiología , Enfermedades Metabólicas/etiología , Estado Nutricional , Sueño , Tolerancia al Trabajo Programado/fisiología , Animales , Humanos , Luz , Enfermedades Metabólicas/metabolismo , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Obesidad/etiología , Descanso/fisiología , Privación de Sueño/metabolismo , Trabajo
15.
Exp Physiol ; 102(12): 1584-1595, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29113012

RESUMEN

NEW FINDINGS: What is the central question of this study? What are the factors influencing day-night variations in postprandial triglycerides? What is the main finding and its importance? Rats show low postprandial plasma triglyceride concentrations early in the active period that are attributable to a higher uptake by skeletal muscle and brown adipose tissue. We show that these day-night variations in uptake are driven by the suprachiasmatic nucleus, probably via a Rev-erbα-mediated mechanism and independent of locomotor activity. These findings highlight that the suprachiasmatic nucleus has a major role in day-night variations in plasma triglycerides and that disturbances in our biological clock might be an important risk factor contributing to development of postprandial hyperlipidaemia. Energy metabolism follows a diurnal pattern, mainly driven by the suprachiasmatic nucleus (SCN), and disruption of circadian regulation has been linked to metabolic abnormalities. Indeed, epidemiological evidence shows that night work is a risk factor for cardiovascular disease, and postprandial hyperlipidaemia is an important contributor. Therefore, the aim of this work was to investigate the factors that drive day-night variations in postprandial triglycerides (TGs). Intact and SCN-lesioned male Wistar rats were subjected to an oral fat challenge during the beginning of the rest phase (day) or the beginning of the active phase (night). The plasma TG profile was evaluated and tissue TG uptake assayed. After the fat challenge, intact rats showed lower postprandial plasma TG concentrations early in the night when compared with the day. However, no differences were observed in the rate of intestinal TG secretion between day and night. Instead, there was a higher uptake of TG by skeletal muscle and brown adipose tissue early in the active phase (night) when compared with the rest phase (day), and these variations were abolished in rats bearing bilateral SCN lesions. Rev-erbα gene expression suggests this as a possible mediator of the mechanism linking the SCN and day-night variations in TG uptake. These findings show that the SCN has a major role in day-night variations in plasma TGs by promoting TG uptake into skeletal muscle and brown adipose tissue. Consequently, disturbance of the biological clock might be an important risk factor contributing to the development of hyperlipidaemia.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Relojes Biológicos/fisiología , Ritmo Circadiano , Grasas de la Dieta/sangre , Metabolismo Energético , Músculo Esquelético/metabolismo , Periodo Posprandial , Núcleo Supraquiasmático/fisiología , Triglicéridos/sangre , Ciclos de Actividad , Animales , Grasas de la Dieta/administración & dosificación , Regulación de la Expresión Génica , Masculino , Actividad Motora , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Fotoperiodo , Ratas Wistar , Transducción de Señal , Núcleo Supraquiasmático/metabolismo , Factores de Tiempo
16.
BMC Cancer ; 17(1): 625, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28874144

RESUMEN

BACKGROUND: Light at night creates a conflicting signal to the biological clock and disrupts circadian physiology. In rodents, light at night increases the risk to develop mood disorders, overweight, disrupted energy metabolism, immune dysfunction and cancer. We hypothesized that constant light (LL) in rats may facilitate tumor growth via disrupted metabolism and increased inflammatory response in the host, inducing a propitious microenvironment for tumor cells. METHODS: Male Wistar rats were exposed to LL or a regular light-dark cycle (LD) for 5 weeks. Body weight gain, food consumption, triglycerides and glucose blood levels were evaluated; a glucose tolerance test was also performed. Inflammation and sickness behavior were evaluated after the administration of intravenous lipopolysaccharide. Tumors were induced by subcutaneous inoculation of glioma cells (C6). In tumor-bearing rats, the metabolic state and immune cells infiltration to the tumor was investigated by using immunohistochemistry and flow cytometry. The mRNA expression of genes involved metabolic, growth, angiogenes and inflammatory pathways was measured in the tumor microenvironment by qPCR. Tumor growth was also evaluated in animals fed with a high sugar diet. RESULTS: We found that LL induced overweight, high plasma triglycerides and glucose levels as well as reduced glucose clearance. In response to an LPS challenge, LL rats responded with higher pro-inflammatory cytokines and exacerbated sickness behavior. Tumor cell inoculation resulted in increased tumor volume in LL as compared with LD rats, associated with high blood glucose levels and decreased triglycerides levels in the host. More macrophages were recruited in the LL tumor and the microenvironment was characterized by upregulation of genes involved in lipogenesis (Acaca, Fasn, and Pparγ), glucose uptake (Glut-1), and tumor growth (Vegfα, Myc, Ir) suggesting that LL tumors rely on these processes in order to support their enhanced growth. Genes related with the inflammatory state in the tumor microenvironment were not different between LL and LD conditions. In rats fed a high caloric diet tumor growth was similar to LL conditions. CONCLUSIONS: Data indicates that circadian disruption by LL provides a favorable condition for tumor growth by promoting an anabolic metabolism in the host.


Asunto(s)
Ritmo Circadiano , Metabolismo Energético , Neoplasias/metabolismo , Neoplasias/patología , Animales , Biomarcadores , Temperatura Corporal , Modelos Animales de Enfermedad , Glucosa/metabolismo , Xenoinjertos , Humanos , Inflamación/metabolismo , Recuento de Leucocitos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Actividad Motora , Fotoperiodo , Ratas , Microambiente Tumoral
17.
J Endocrinol ; 235(3): 167-178, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28851750

RESUMEN

Circadian disruption is associated with metabolic disturbances such as hepatic steatosis (HS), obesity and type 2 diabetes. We hypothesized that HS, resulting from constant light (LL) exposure is due to an inconsistency between signals related to food intake and endocrine-driven suprachiasmatic nucleus (SCN) outputs. Indeed, exposing rats to LL induced locomotor, food intake and hormone arrhythmicity together with the development of HS. We investigated whether providing temporal signals such as 12-h food availability or driving a corticosterone plus melatonin rhythm could restore rhythmicity and prevent the metabolic disturbances under LL conditions in male rats. Discrete metabolic improvements under these separate treatments stimulated us to investigate whether the combination of hormone treatment together with mealtime restriction (12-h food during four weeks) could prevent the metabolic alterations. LL exposed arrhythmic rats, received daily administration of corticosterone (2.5 µg/kg) and melatonin (2.5 mg/kg) in synchrony or out of synchrony with their 12-h meal. HS and other metabolic alterations were importantly ameliorated in LL-exposed rats receiving hormonal treatment in synchrony with 12-h restricted mealtime, while treatment out of phase with meal time did not. Interestingly, liver bile acids, a major indication for HS, were only normalized when animals received hormones in synchrony with food indicating that disrupted bile acid metabolism might be an important mechanism for the HS induction under LL conditions. We conclude that food-elicited signals, as well as hormonal signals, are necessary for liver synchronization and that HS arises when there is conflict between food intake and the normal pattern of melatonin and corticosterone.


Asunto(s)
Trastornos Cronobiológicos/complicaciones , Corticosterona/administración & dosificación , Hígado Graso/etiología , Métodos de Alimentación , Melatonina/administración & dosificación , Núcleo Supraquiasmático/fisiopatología , Adiposidad/efectos de los fármacos , Animales , Trastornos Cronobiológicos/fisiopatología , Trastornos Cronobiológicos/prevención & control , Hígado Graso/metabolismo , Hígado Graso/prevención & control , Trastornos del Metabolismo de la Glucosa/etiología , Trastornos del Metabolismo de la Glucosa/prevención & control , Luz/efectos adversos , Masculino , Ratas Wistar
19.
Exp Physiol ; 101(12): 1463-1471, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27753158

RESUMEN

NEW FINDINGS: What is the topic of this review? Both branches of the autonomic nervous system are involved in the regulation of the inflammatory response. We explore how the hypothalamus may influence this process. What advances does it highlight? We analyse how a lipopolysaccharide signal is transmitted to the brain and which areas participate in the response of the brain to lipopolysaccharide. Recent studies show that the hypothalamus can influence the inflammatory response by modifying the autonomic output. The biological clock, the suprachiasmatic nucleus, is integrated into this circuit, putting a time stamp on the intensity of the inflammatory response. The brain is responsible for maintaining homeostasis of the organism, constantly adjusting its output via hormones and the autonomic nervous system to reach an optimal setting in every compartment of the body. Also, the immune system is under strong control of the brain. Apart from the conventional systemic responses evoked by the brain during inflammation, such as hypothalamic-pituitary-adrenal axis activation and the induction of sickness behaviour, the autonomic nervous system is now recognized to exert regulatory effects on the inflammatory response. Both branches of the autonomic nervous system are proposed to influence the inflammatory process. Here, we focus on those areas of the brain that might be involved in sensing inflammatory stimuli, followed by how that sensing could change the output of the autonomic nervous system in order to regulate the inflammatory response. Finally, we will discuss how the defenses of the body against a lipopolysaccharide challenge are organized by the hypothalamus.


Asunto(s)
Hipotálamo/fisiología , Sistema Inmunológico/fisiología , Animales , Sistema Nervioso Autónomo/fisiología , Humanos , Sistema Hipotálamo-Hipofisario/fisiología , Inflamación/fisiopatología
20.
Physiology (Bethesda) ; 31(3): 170-81, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27053731

RESUMEN

Circadian rhythms are generated by the autonomous circadian clock, the suprachiasmatic nucleus (SCN), and clock genes that are present in all tissues. The SCN times these peripheral clocks, as well as behavioral and physiological processes. Recent studies show that frequent violations of conditions set by our biological clock, such as shift work, jet lag, sleep deprivation, or simply eating at the wrong time of the day, may have deleterious effects on health. This infringement, also known as circadian desynchronization, is associated with chronic diseases like diabetes, hypertension, cancer, and psychiatric disorders. In this review, we will evaluate evidence that these diseases stem from the need of the SCN for peripheral feedback to fine-tune its output and adjust physiological processes to the requirements of the moment. This feedback can vary from neuronal or hormonal signals from the liver to changes in blood pressure. Desynchronization renders the circadian network dysfunctional, resulting in a breakdown of many functions driven by the SCN, disrupting core clock rhythms in the periphery and disorganizing cellular processes that are normally driven by the synchrony between behavior and peripheral signals with neuronal and humoral output of the hypothalamus. Consequently, we propose that the loss of synchrony between the different elements of this circadian network as may occur during shiftwork and jet lag is the reason for the occurrence of health problems.


Asunto(s)
Conducta/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Hipotálamo/fisiología , Fenómenos Fisiológicos del Sistema Nervioso , Núcleo Supraquiasmático/fisiología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...